DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)

DESIGN OF ALGORITHMS \& ANALYSIS QUESTIONS

1. Explain what is Quick Sort algorithm?

Quick Sort algorithm has the ability to sort list or queries quickly. It is based on the principle of partition exchange sort or Divide and conquer. This type of algorithm occupies less space, and it segregates the list into three main parts Elements less than the Pivot element Pivot element Elements greater than the Pivot element
2. Explain what is an algorithm in computing?

An algorithm is a well-defined computational procedure thotake value as input and generate some value as output. In simple words, it's a sencorn computational steps that converts input into the output.
3. Explain what is time complexity of Algorithm

Time complexity of an algorithm indicars the total time needed by the program to run to completion. It is usually expressed ang the big O notation.
4. Mention what are the types tation used for Time Complexity?

The types of Notation ar for Time Complexity includes Big Oh: It indicates "fewer than or the same as Qrpession>iterations Big Omega: It indicates "more than or same as" <expressionite ations Big Theta: It indicates "the same as"<expression>iterations Little Oh: It indicates "fewer than" <expression>iterations Little Omega: It indicates "more than" <expression>iterations
5. Explain how binary search works?

In binary search, we compare the key with the item in the middle position of the array. If the key is less than the item searched then it must lie in the lower half of the array, if the key is greater than the item searched than it should be in upper half of the array.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
6. Explain whether it is possible to use binary search for linked lists?

Since random access is not acceptable in linked list, it is impossible to reach the middle element of $\mathrm{O}(1)$ time. Thus, binary search is not possible for linked list.
7. Explain what is heap sort?

Heap-sort can be defined as a comparison based sorting algorithm. It divides its input into the unsorted and sorted region, until it shrinks the unsorted region by eliminating the smallest element and moving that to the sorted region.
8. Explain what is Skip list?

Skip list the method for data structuring, where it allows gorithm to search, delete and insert elements in a symbol table or dictionary. Jip list, each element is represented by a node. The search function returns the atent of the value related to key. The insert operation associates a specified key with ancen while the delete function deletes the specified key
9. Explain what is Space complexty of insertion sort algorithm? Insertion sort is an in-plating algorithm which means that it requires no extra or little. storage. For insertio it requires only single list elements to be stored out-side the initial data, mang the space-complexity $0(1)$..
10. Explain what a "Hash Algorithm" is and what are they used for?
"Hash Algorithm" is a hash function that takes a string of any length and decreases it to a unique fixed length string. It is used for password validity, message $\&$ data integrity and for many other cryptographic systems.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
11. Explain how to find whether the linked list has a loop?

To know whether the linked list has a loop, we will take two pointer approach. If we maintain two pointers, and we increase one pointer after processing two nodes and other after processing every node, we are likely to encounter a situation where both the pointer will be pointing to the same node. This will only occur if linked list has a loop.
12. Explain what is the difference between best case scenario and worst case scenario of an algorithm?
Best case scenario: Best case scenario for an algorithm is e paina as the arrangement of data for which the algorithm performs best. For exam pre, wake a binary search, for which the best case scenario would be if the target calud at the very center of the data you are searching. The best case time complexity Orbe 0 (1)

Worst case scenario: It is referred for the worst set of input for a given algorithm. For example quicksort, which can perforpre if you select the largest or smallest element of a sublist for the pivot value. It wide quicksort to degenerate to $\mathrm{O}(\mathrm{n} 2)$
13. Explain what is Radix Sherithm?

Radix sort puts the ennt in order by comparing the digits of the numbers. It is one of the linear sortin alg rithms for integers.
14. Mention what are the three laws of recursion algorithm?

All recursive algorithm must follow three laws It should have a base case A recursive algorithm must call itself A recursive algorithm must change its state and move towards the base case

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
15. Explain what is bubble sort algorithm?

Bubble sort algorithm is also referred as sinking sort. In this type of sorting, the list to be sorted out compares the pair of adjacent items. If they are organized in the wrong order, it will swap the values and arrange them in the correct order
16. Define Transitive Closure of a Graph using DFS

Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex pairs (u, v) in the given graph. Here reachable mean that ere is a path from vertex u to v . The reach-ability matrix is called transitive closure of

For example, consider below graph

Transitive closure of above graphs
1111
1111
1111
0001

17. List out Applications of Depth First Search

- For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all pair shortest path tree.
- Detecting cycle in a graph
- .Path Finding.
- To test if a graph is bipartite.
- Topological Sorting
- Finding Strongly Connected Components of a graph
- Solving puzzles with only one solution,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
18. What is recurrence for worst case of QuickSort and what is the time complexity in Worst case?

Recurrence is $T(n)=T(n-1)+O(n)$ and time complexity is $O\left(n^{\wedge} 2\right)$

19. Suppose we have a $O(n)$ time algorithm that finds median of an unsorted array. Now consider a QuickSort implementation where we first find median using the above algorithm, then use median as pivot. What will be the worst case time complexity of this modified QuickSort.

O(nLogn)
20. Given an unsorted array. The array has this property that ver element in array is at most k distance from its position in sorted array where kinalle integer smaller size of array. Which sorting algorithm can be easily codifred for sorting this array and what is the obtainable time complexity?

21. Which of the following is not tryad comparison based sorting algorithms?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
23. What is the time complexity of fun()?

```
int fun(int n)
{
    int count = 0;
    for (int i = 0; i < n; i++)
    for (int j = i; j> 0; j--)
        count = count + 1;
```

 return count;
 \}

Theta (n^{\wedge})
24. The recurrence relation capturing the optimal tim the Tower of Hanoi problem with n discs is.

$$
T(n)=2 T(n-1)+1
$$

25. Which of the following algoritkonsis NOT a divide \& conquer algorithm by nature?
26. Consider the porng mial $p(x)=a 0+a 1 x+a 2 x^{\wedge} 2+a 3 x^{\wedge} 3$, where $a i!=0$, for all i. The minimum number of multiplications needed to evaluate p on an input x is:

3
27. Maximum Subarray Sum problem is to find the subarray with maximum sum. For Example , given an array $\{12,-13,-5,25,-20,30,10\}$, the maximum subarray sum is 45 . The naive solution for this problem is to calculate sum of all subarrays starting with every element and return the maximum of all. We can solve this using Divide and Conquer, what will be the worst case time complexity using Divide and Conquer.

O(nLogn)

1505001

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)
28. Consider a situation where you don't have function to calculate power (pow() function in C) and you need to calculate $x^{\wedge} n$ where x can be any number and n is a positive integer. What can be the best possible time complexity of your power function?

O(Logn)

29. The secant method is used to find the root of an equation $f(x)=0$. It is started from two distinct estimates x_{a} and x_{b} for the root. It is an iterative procedure involving linear interpolation to a root. The iteration stops if $f\left(x_{b}\right)$ is very small and then x_{b} is the slution. The procedure is given below. Observe that there is an expression which is missing adrane bed Which is the suitable expression that is to be put in place of? So that it follow all gops of the secant method? Initialize: $\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}, \varepsilon, \mathrm{N} \quad / / \varepsilon=$ convergence indicator
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{b}}\right) \mathrm{i}=0$
while ($\mathrm{i}<\mathrm{N}$ and $\left|\mathrm{f}_{\mathrm{b}}\right|>\varepsilon$) do
$\mathrm{i}=\mathrm{i}+1$
$\mathrm{x}_{\mathrm{t}}=?$

$\mathrm{x}_{\mathrm{a}}=\mathrm{x}_{\mathrm{b}}$
$\mathrm{x}_{\mathrm{b}}=\mathrm{x}_{\mathrm{t}}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{b}}\right)$
end while

if $\left|\mathrm{f}_{\mathrm{b}}\right|>\varepsilon$
then // loop is terminated with $\mathrm{i}=\mathrm{N}$
write "Non-convergence"
else
write "return x_{b} "
end if

$$
\mathbf{x}_{\mathrm{a}}-\left(\mathbf{x}_{\mathrm{b}}-\mathbf{x}_{\mathbf{a}}\right) \mathbf{f}_{\mathbf{a}} /\left(\mathbf{f}_{\mathrm{b}}-\mathbf{f}\left(\mathbf{x}_{\mathbf{a}}\right)\right)
$$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
30. Suppose you are provided with the following function declaration in the C programming language.
int partition (int a[], int n);
The function treats the first element of a[] as a pivot, and rearranges the array so that all elements less than or equal to the pivot is in the left part of the array, and all elements greater than the pivot is in the right part. In addition, it moves the pivot so that the pivot is the last element of the left part. The return value is the number of elements in the left part. The following partially given function in the C programming language is used to find the kth smallest lement in an array a[] of size n using the partition function. We assume $\mathrm{k} \leq \mathrm{n}$ int kth_smallest (int a[], int n, int k) \{
int left_end = partition (a, n);
if (left_end+1==k)
\{
return a [left_end];
\}
if (left_end+1 >k)
\{
return kth_smallest (;);
\}
else
\{
return kth_smallest (\qquad);
\}
\}
(a, left_end, k) and (a+left_end+1, n-left_end- $\left.1, k-l e f t _e n d-1\right)$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
31. What is the value of following recurrence.
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 4)+\mathrm{T}(\mathrm{n} / 2)+\mathrm{cn}^{\wedge} 2$
$\mathrm{T}(1)=\mathrm{c}$
$\mathrm{T}(0)=0$
Where c is a positive constant
$\mathbf{O}\left(\mathbf{n}^{\wedge}\right.$ 2)
32. Consider the following program fragment for reversing the digits in giyen integer to obtain a new integer. Let $\mathrm{n}=\mathrm{D} 1 \mathrm{D} 2 . . \mathrm{Dm}$ int n , rev;
rev $=0$;
while ($\mathrm{n}>0$)
$\{$

$$
\mathrm{rev}=\mathrm{rev}^{*} 10+\mathrm{n} \% 10
$$

$$
\mathrm{n}=\mathrm{n} / 10
$$

\}
33. What is the best tim co nplexity of bubble sort?

N
34. What is the worst case time complexity of insertion sort where position of the data to be inserted is calculated using binary search?

$$
\mathbf{N}^{\wedge} 2
$$

35. The tightest lower bound on the number of comparisons, in the worst case, for comparisonbased sorting is of the order of
$N \log N$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)

Abstract

36. In a modified merge sort, the input array is splitted at a position one-third of the length(N) of the array. What is the worst case time complexity of this merge sort?

$\mathrm{N}(\log \mathrm{N}$ base $3 / 2)$
37. What is the time complexity of the below function?
void fun(int n, int $\operatorname{arr}[]$)
\{

$$
\operatorname{int} \mathrm{i}=0, \mathrm{j}=0
$$

$$
\text { for }(; \mathrm{i}<\mathrm{n} ;++\mathrm{i})
$$

$$
\text { while }(\mathrm{j}<\mathrm{n} \& \& \operatorname{arr}[\mathrm{i}]<\operatorname{arr}[\mathrm{j}])
$$

j++;
\}

38. In a competition, four different functionaserved. All the functions use a single for loop and within the for loop, same set of statenintsare executed. Consider the following for loops:
A) $\operatorname{for}(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$
B) $\operatorname{for}(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}+=2)$
C) $\operatorname{for}\left(\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}^{*}=2\right)$
D) $\operatorname{for}(\mathrm{i}=\mathrm{n} ; \mathrm{i}>-1 ; \mathrm{i} /=2)$

If \mathbf{n} is the size of input(positive), which function is most efficient (if the task to be performed is not an issue)?

$$
\operatorname{for}(i=1 ; i<n ; i *=2)
$$

39. The following statement is valid. $\log (n!)=\theta_{(n \log n)}$.

TRUE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
40. What does it mean when we say that an algorithm X is asymptotically more efficient than Y ?
X will be a better choice for all inputs except small inputs
41. What is the time complexity of Floyd-Warshall algorithm to calculate all pair shortest path in a graph with \mathbf{n} vertices?

Theta(n^3)

42. A list of n string, each of length n, is sorted into lexicographic order using the merge-sort algorithm. The worst case running time of this computation is

$$
O\left(n^{2} \log n\right)
$$

43. In quick sort, for sorting n elements, the ($\mathrm{n} / 4$)th smallest elemens soded as pivot using an $\mathrm{O}(\mathrm{n})$ time algorithm. What is the worst case time complexity of nequicl sort?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
46. What is running time of an algorithm is given by the reccurence $t(n)=t(n-1)+n, t(1)=1$.
n
47. Which data structure is used in the implementation of topological sorting?

Directed acyclic graph

48. Which one of the following is the tightest upper bound that represents the number of swaps required to sort n numbers using selection sort?
(A) $\mathrm{O}(\operatorname{logn})(\mathbf{B}) \mathbf{O}(\mathbf{n})(\mathrm{C}) \mathrm{O}(\mathrm{nlogn})(\mathrm{D}) \mathrm{O}(\mathrm{n} 2)$
49. Which one of the following is the tightest upper bound that repesenk time complexity of inserting an object into a binary search tree of n nodes?

$$
\text { (A) } \mathrm{O}(1)(\mathrm{B}) \mathrm{O}(\operatorname{logn})(\mathrm{C}) \mathbf{O}(\mathbf{n})(\mathrm{D}) \mathrm{O}(\mathrm{nlog} \mathrm{n})
$$

50. What is the time complexity of Bellman-Ford ingle-source shortest path algorithm on a complete graph of n vertices?
$\boldsymbol{\Theta}(\mathrm{n} 3)$
51. Consider the following two functionc What are time complexities of the functions? int fun1(int n)
\{
if ($\mathrm{n}<=1$) return n ;
return $2 *$ fun1 ($\mathrm{n}-1$);
\}
int fun2(int n)
\{

$$
\text { if (} \mathrm{n}<=1 \text {) return } \mathrm{n} \text {; }
$$

$$
\text { return fun } 2(\mathrm{n}-1)+\text { fun } 2(\mathrm{n}-1)
$$

\}

$$
O(n) \text { for fun1 }() \text { and } O\left(2^{\wedge} n\right) \text { for fun2 }()
$$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
52. n quick sort, for sorting n elements, the ($\mathrm{n} / 4$)th smallest element is selected as pivot using an $\mathrm{O}(\mathrm{n})$ time algorithm. What is the worst case time complexity of the quick sort?

Theta(nLogn)

53. You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array as the pivot. Then the tightest upper bound for the worst case performance is

$$
\mathbf{O}\left(n^{2}\right)
$$

54.

Consider the graph given below : Use Kruskal'sarthm to find a minimal spanning tree for the graph. The List of the edges of the tree in the in which they are choosen is?
(1) AD, AE, AG, GC, GB, BF
(2) GC, GB, BF, GA, AD, AE
(3) GC, AD, GB, GA, BF, AE
(4) AD,
, AG
, GC, , AE,

ANS: BD, GC, AD, B\&A, BF
55. The following numbers are inserted into an empty binary search tree in the given order: 10,1 , $3,5,15,12,16$ What is the height of the binary search tree ?
56. Consider the following C-function:
double foo (int n)
\{
int i ;

58. Let $T(n)$ be a function defined by the recurrence $T(n)=2 T(n / 2)+\sqrt{ }$ for $n \geq 2$ and $T(1)=1$ Which of the following statements is TRUE?
$T(n)=\theta(n)$
59. The worst case running times of Insertion sort, Merge sort and Quick sort, respectively, are:

$$
\Theta\left(n^{2}\right), \Theta(n \log n) \text { and } \Theta\left(n^{2}\right)
$$

60. Assume that the algorithms considered here sort the input sequences in ascending order. If the input is already in ascending order, which of the following are TRUE?
I. Quicksort runs in $\Theta\left(\mathrm{n}^{2}\right)$ time
II. Bubblesort runs in $\Theta\left(n^{2}\right)$ time
III. Mergesort runs in $\Theta(\mathrm{n})$ time
IV. Insertion sort runs in $\Theta(n)$ time

I and IV only
61. A problem in NP is NP-complete if

The 3-SAT problem can be reduced to it in polynomial time
62. The characters a to h have the set of frequencies bars the first 8 Fibonacci numbers as follows
$\mathrm{a}: 1, \mathrm{~b}: 1, \mathrm{c}: 2, \mathrm{~d}: 3, \mathrm{e}: 5, \mathrm{f}: 8, \mathrm{~g}: 13, \mathrm{~h}: 21 /$
A Huffman code is used to represent thacters. What is the sequence of characters corresponding to the following code? 110 1 N 00111010
fdheg
63. What is the size of the si@r(MIS(Maximal Independent Set) of a chain of nine nodes?
64. Arrange the following functions in increasing asymptotic order:
A.

e^{n}

B.
C.
D.
n
$n^{1 / 3}$
$\mathrm{n}^{7 / 4}$
$\log ^{9} n$
E. 1.0000001^{n}

A, D, C, E, B

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)
65. If we use Radix Sort to sort n integers in the range $\left(\mathrm{n}^{\mathrm{k} / 2}, \mathrm{n}^{\mathrm{k}}\right]$, for some $\mathrm{k}>0$ which is independent of n, the time taken would be?

$\Theta($ nlogn $)$

66. The auxiliary space of insertion sort is $\mathrm{O}(1)$, what does $\mathrm{O}(1)$ mean?

It means the amount of extra memory Insertion Sort consumes doesn't depend on the input. The algorithm should use the same amount of memory for all inputs.
67. The time complexity of computing the transitive closure of anation on a set of n elements is known to be
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
68. Match the following:
codes:
List - I
(a) The 8-Queen's problem
(b) Single-Source shortest paths
(c)STRASSEN's Matrix multio icat on
(d)Optimal binary seat th

List - II
(i)Dynamic programming
(ii) Divide and conquer
(iii)Greedy approach
(iv)Backtracking
Ans:
(iv)
(iii)
(ii)
(i)
68. Floyd-Warshall algorithm utilizes \qquad to solve the all-pairs shortest paths problem on a directed graph in \qquad time.

Dynamic programming, $\theta\left(\mathbf{V}^{\mathbf{3}}\right)$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)

69. To determine the efficiency of an algorithm the time factor is measured by:

Counting number of key operations

70. Let $T(n)$ be defined by $T(1)=10$ and $T(n+1)=2 n+T(n)$ and for all integers $n \geq 1$. Which of the following represents the order of growth of $T(n)$ as a function of $\mathrm{O}\left(\mathrm{n}^{2}\right)$
71. An all-pairs shortest-paths problem is efficiently solved using:

Floyd-Warshall algorithm

72. The travelling salesman problem can be solved in:

Exponential time using dynamic programming algorithrior branch-and-bound algorithm
73. Which of the following is asymptotically smaller $\boldsymbol{\operatorname { l g }}(\boldsymbol{\operatorname { l g }} * \mathbf{n})$
74. Let $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ be asymptotically nongative functions. Which of the following is correct?
$\boldsymbol{\theta}(\mathbf{f}(\mathbf{n})+\mathbf{g}(\mathbf{n}))=\boldsymbol{\operatorname { m a x }}(\mathbf{f}(\mathbf{n}), \mathbf{g}(\mathbf{n}))$
75. Which design matric is used thasure the compactness of the program in terms of lines of code?

Conciseness
76. Which of the following standard algorithms is not Dynamic Programming based.

Prim's Minimum Spanning Tree

77. We use dynamic programming approach when

The solution has optimal substructure

78. A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences $X[m]$ and $Y[n]$ of lengths m and n respectively, with indexes of X and Y starting from 0 . We wish to find the length of the longest common subsequence(LCS) of $X[m]$ and $Y[n]$ as $l(m, n)$, where an incomplete recursive definition for the function $l(i, j)$ to compute the length of The LCS of $X[m]$ and $Y[n]$ is given below:
```
\(1(i, j)=0\), if either \(\mathrm{i}=0\) or \(\mathrm{j}=0\)
    \(=\operatorname{expr} 1\), if \(\mathrm{i}, \mathrm{j}>0\) and \(\mathrm{X}[\mathrm{i}-1]=\mathrm{Y}[\mathrm{j}-1]\)
    \(=\) expr2, if \(\mathrm{i}, \mathrm{j}>0\) and \(\mathrm{X}[\mathrm{i}-1]!=\mathrm{Y}[\mathrm{j}-1]\)
\(\operatorname{expr} \mathbf{2} \equiv \max (\mathbf{l}(\mathbf{i}-1, \mathbf{j}), \mathbf{l}(\mathbf{i}, \mathbf{j}-\mathbf{1}))\)
```

79. Consider the following two sequences :
$\mathrm{X}=\langle\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{C}\rangle$, and
$\mathrm{Y}=\langle\mathrm{C}, \mathrm{A}, \mathrm{D}, \mathrm{B}, \mathrm{C}, \mathrm{B}>$
The length of longest common subsequence of X and Y is :
80. The following paradigm can be used to find the solution the oblem in minimum time: Given a set of non-negative integer, and a value K , determe inde is a subset of the given set with sum equal to K :

Dynamic Programming

81. Consider the problem of searching an eleme4 in an array 'arr[]' of size n. The problem can be solved in $O(\operatorname{Logn})$ time if. 1) Array is 1 (2) Array is sorted and rotated by k. k is given to you and $\mathrm{k}<=\mathrm{n} 3$) Array is sorted and rata by $\mathrm{k} . \mathrm{k}$ is NOT given to you and $\mathrm{k}<=\mathrm{n} 4$) Array is not sorted
82. What are the arganen s present in pattern matching algorithms?

These are the following arguments which are present in pattern matching Algorithms. 1) Subject,
2)

Pattern
3)
4)

MATCH_STR
5)

REPLACE_STR
6) REPLACE_FLAG

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
 (Accredited by NBA)

83. How to find median of a BST?

Find the no. of elements on the left side. If it is $n-1$ the root is the median. If it is more than $n-1$, then it has already been found in the left subtree. Else it should be in the right subtree

84. What is Diffie-Hellman?

It is a method by which a key can be securely shared by two users without any actual exchange.
85. What is the goal of the shortest distance algorithm?

The goal is completely fill the distance array so that forchrtex v, the value of distance[v] is the weight of the shortest path from start to v.
86. Explain the depth of recursion?

This is another recursion procedure which is the mer of times the procedure is called recursively in the process of enlarging a given argunat or arguments. Usually this quantity is not obvious except in the case of extremely simple redrsive functions, such as FACTORIAL (N), for which the depth is N .

87. Which are the sorting algorithmscanegories?

Sorting algorithms can be divided into five categories:
a) insertion sorts
b) exchange sorts
c) selection so
d) merge sorts
e) distribution sorts

88.Define a brute-force algorithm. Give a short example.

A brute force algorithm is a type of algorithm that proceeds in a simple and obvious way, but requires a huge number of steps to complete. As an example, if you want to find out the factors of a given number N , using this sort of algorithm will require to get one by one all the possible number combinations.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
 (Accredited by NBA)

89. What is a greedy algorithm? Give examples of problems solved using greedy algorithms.

A greedy algorithm is any algorithm that makes the local optimal choice at each stage with the hope of finding the global optimum. A classical problem which can be solved using a greedy strategy is the traveling salesman problem. Another problems that can be solved using greedy algorithms are the graph coloring problem and all the NP-complete problems.

90. What is a backtracking algorithm? Provide several examples.

It is an algorithm that considers systematically all possible outcomes fo each decision. Examples of backtracking algorithms are the eight queens problem or genermonntations of a given sequence.

91. What is the difference between a backtracking algormin and a brute-force one?

Due to the fact that a backtracking algorithm takes the possible outcomes for a decision, it is similar from this point of view with the brute for a corithm. The difference consists in the fact that sometimes a backtracking algorithm capaed that an exhaustive search is unnecessary and, therefore, it can perform much better.

92. Describe divide and conquaradigm.

When a problem is a conquer algorithm, it is subdivided into one or more subproblems Nich are all similar to the original problem in such a way that each of the subproblems can be solved independently. In the end, the solutions to the subproblems are combined in order to obtain the solution to the original problem.

93. Describe on short an insertion sorting algorithm.

An algorithm that sorts by insertion takes the initial, unsorted sequence and computes a series of sorted sequences using the following rules:
a) the first sequence in the series is the empty sequence b) given a sequence $\mathrm{S}(\mathrm{i})$ in the series, for $0<=\mathrm{i}<==" \mathrm{p}=$ "">

94. Which are the advantages provided by insertion sort?

Insertion sort provides several advantages:
a) simple implementation
b) efficient for small data sets
c) adaptive - efficient for data sets that are already substantially sorted: the time complexity is $\mathrm{O}(\mathrm{n}+\mathrm{d})$, where d is the number of inversions
d) more efficient in practice than most other simple quadratic, i.e. $\mathrm{O}(\mathrm{n} 2)$ algorithms such as selection sort or bubble sort; the best case (nearly sorted input) is $\mathrm{O}(\mathrm{n})$
e) stable - does not change the relative order of elements with equal
f) in-place - only requires a constant amount $\mathrm{O}(1)$ of ditional memory space g) online - can sort a list as it receives it.

95. What is Huffman coding?

In computer science and information theor \mathbf{x} Hulman coding is an entropy encoding algorithm used for lossless data compression. The fern refers to the use of a variable-length code table for encoding a source symbol (such as acter in a file) where the variable-length code table has been derived in a particular based on the estimated probability of occurrence for each possible value of the source
96. Let S be an NP-complet 8 Qem and Q and R be two other problems not known to be in NP. Q is polynomial time edug ble to S and S is polynomial-time reducible to R. Which one of the following statements is true?
R is NP-hard

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)
97. Suppose a polynomial time algorithm is discovered that correctly computes the largest clique in a given graph. In this scenario, which one of the following represents the correct Venn diagram of the complexity classes P, NP and NP Complete (NPC)?
(A)

(C)

Answer: D
98. Consider the decision problem 2CNH defined as follows:
$\{\Phi \mid \Phi$ is a satisfiable propositianarmula in CNF with at most two literals per clause $\}$
For example, $\Phi=\left(x_{1} \vee x_{2}\right) \wedge \vee\left(x_{2} \vee x_{4}\right)$ is a Boolean formula and it is in 2CNFSAT.
The decision problem $2 \mathrm{CFS} T$ is
A NP-Complete.
B solvable in polynomial time by reduction to directed graph reachability.
C solvable in constant time since any input instance is satisfiable.
D NP-hard, but not NP-complete.

Answer: NP-Complete

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(Accredited by NBA)
99. Let SHAM_{3} be the problem of finding a Hamiltonian cycle in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with V divisible by 3 and DHAM_{3} be the problem of determining if a Hamiltonian cycle exists in such graphs. Which one of the following is true?
A. Both DHAM_{3} and SHAM_{3} are NP-hard

B SHAM_{3} is NP-hard, but DHAM_{3} is not
C DHAM_{3} is NP-hard, but SHAM_{3} is not
D. Neither DHAM_{3} nor SHAM_{3} is NP-hard

Answer: Both DHAM 3 and SHAM $_{3}$ are NP-hard
100. Which of the following statements are TRUE?

1. The problem of determining whether there exists ander undirected graph is in P .
2. The problem of determining whether there exist a ycle in an undirected graph is in NP.
3. If a problem A is NP-Complete, there exists on-deterministic polynomial time algorithm to solve A.

Answer: 1, 2 and 3

